

Optoelektronische Messtechnik

Vorlesung | Nr. 6 | Empfänger | Äußerer Photoeffekt | Photomultiplier Tube

LTI | Lichttechnisches Institut

Prinzipieller Aufbau eines Messsystem Hier geht's weiter.

Strahlung

- •Zu bewertende Optische Messgröße
- •Bestrahlungsstärke, Lichtstärke, Laufzeit, etc...

Optik

- Beeinflussung der Strahlung auf optischer Ebene
- Spektrometer, Filter, Objektiv, Streuscheibe

- Umwandlung der optischen Strahlung in ein elektrisches Signal
- •Diode, PM Tube, CCD, Transistor

- Extraktion des gesuchten Zusammenhangs aus der gemessenen Größe
- •z.B. Bewertung des Spektrums mit aktinischer Wirkung

Interpretation

 Elektrische Interpretation der Messdaten, d.h. Herstellung des Zusammenhangs zwischen elektrischem Signal und optischer Größe über eine Kalibrierung oder Umrechnung der Laufzeit in eine Wegstecke

Signalverarbeitung

- Umwandlung der elektrischen Größe z.B. U oder I in einen Messwert
- Mulitmeter, Messverstärker, Lock-In-Verstärker

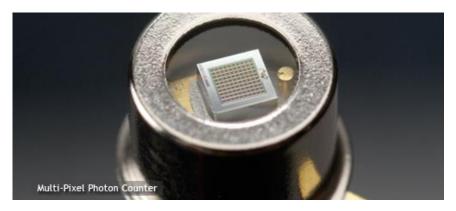
ERGEBNIS

Detektorprinzip

- optisches Signal
- Empfänger
- elektrisches Signal

$$s(\lambda, f, T, ...) \equiv \frac{X}{Y}$$

- Eingangsgröße | Ursache | Y
 - Strahlungsgröße, i.d.R. Bestrahlungsstärke
- Ausgangsgröße | Wirkung | X
 - elektrisches Signal (Strom, Spannung, Ladung, Verschiebungsstrom)
- Empfindlichkeit | s
 - Verhältnis von Ausgangsgröße (Wirkung) zur Detektor Eingangsgröße (Ursache)


3

Anforderungen an Detektoren

http://sales.hamamatsu.com/

http://sales.hamamatsu.com/

- spektrale Empfindlichkeit
 - Hoch, d.h. starke Änderung des elektrischen Signals in Abhängigkeit des optischen Signals
 - Möglichst konstant über einen spektralen Bereich
 - Linear über einen großen Signalbereich (Dynamik)
 - großer Wellenlänge Bereich
- Signal-Rausch-Verhältnis
 - SNR >> 1
 - Rauschen klein (NEP)
- zeitliche Dynamik
 - kurze Ansprechzeit (f_{Grenz})
 - großer Frequenzbereich

Einteilung Photodetektoren

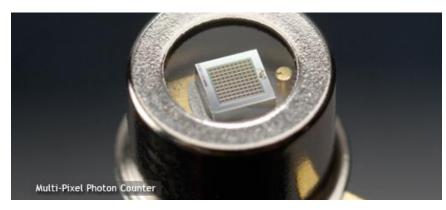
Quanten Detektoren

Äußerer Photoeffekt

Innerer Photoeffekt

Thermische Detektoren

Boloemter **Effekt**

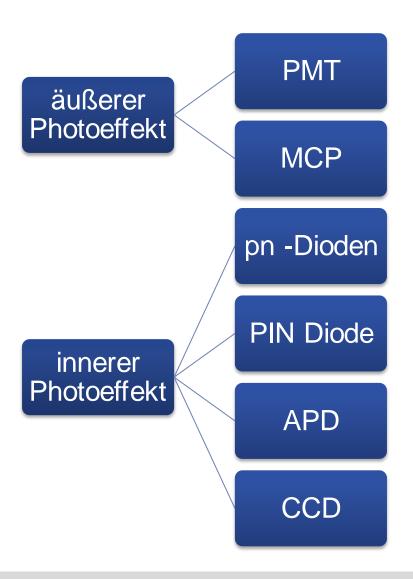

Thermoelektrischer Effekt

Pyroelektrischer Effekt

Thermopneumatischer Effekt

Quantendetektoren

www.hamamatsu.de

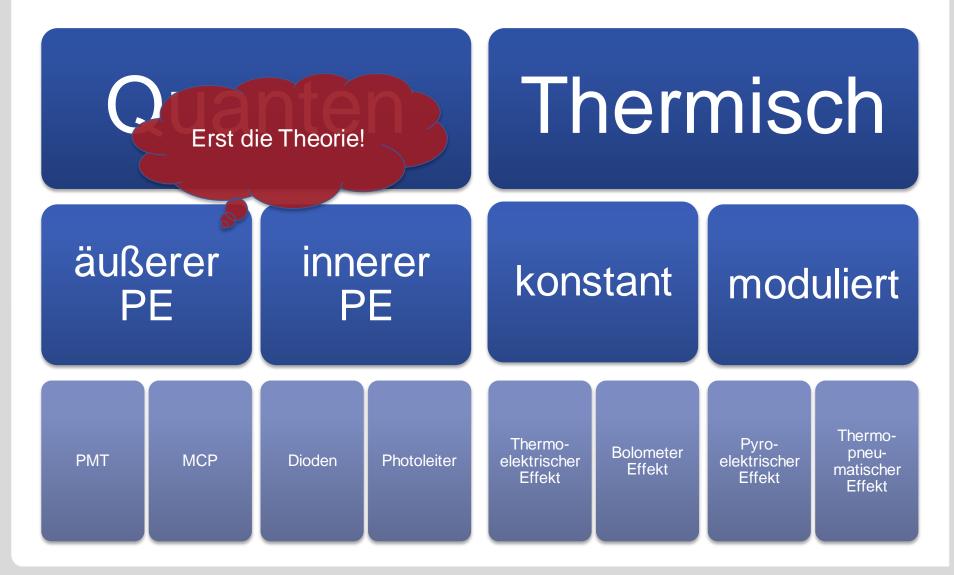


www.hamamatsu.de

- Photonen generieren Elektronen und / oder Löcher
- Photosignal proportional der Photonenrate
- Beispiele
 - Photomultiplier Tube (PMT)
 - Dioden
 - **Phototransistor**
 - Solarzelle
- allgemeine Eigenschaften
 - schnell &
 - empfindlich &
 - Spektral selektiv 🤏
 - Temperatursensitiv 🦃

Quanten Detektoren

Äußerer Photoeffekt


- Photonen lösen freie Elektronen aus dem Material.
- Detektion der freien Elektronen nach Vervielfachung

Innerer Photoeffekt

- Photonen generieren durch Anregung von Elektronen aus dem Valenz- in das Leitungsband Ladungsträger im Material
- Detektion der Elektronen als Photostrom

optoelektronische Empfänger

Außerer Photoeffekt

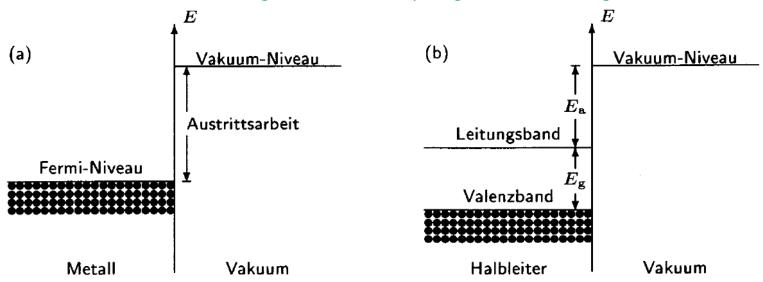
1839 Entdeckung durch Alexandre Edmond Becquerel (1820 - 1891)

- Metall- oder Halbleiter emittiert beim Auftreffen von optischer Strahlung auf dessen Oberfläche Photoelektronen in den Außenraum, wenn die Photonenenergie hv größer als die photoelektrische Austrittsarbeit Φ ist.
- Es gilt gemäß Einstein

$$h\nu = \Phi + E_{kin}$$

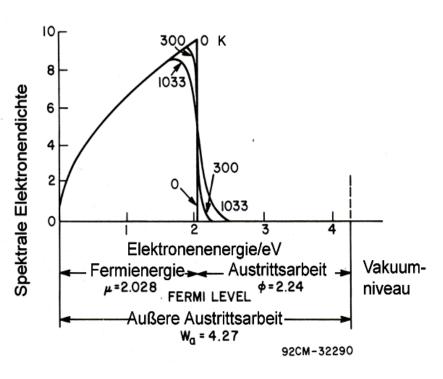
Außerer Photoeffekt

Die Photonen müssen ausreichend Energie haben, um e- ins Vakuum zu heben


Nachteile Metall: - Metalloberflächen reflektieren gut → geringe Absorption

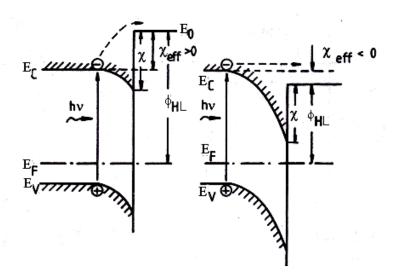
- e⁻ haben kurze freie Weglänge → verlieren schnell Energie

Halbleiter: - effiziente Absorption, relative lange Lebensdauern→


erhöhte Entweichtiefe

Durch Oberflächen-Dotierung kann Potentialsprung ins Vakuum abgesenkt werden.

Metallische Photokathode


- Bei T > 0 K existieren im Metall freie Elektronen mit kinetischen Energien auch oberhalb der Fermienergie E_F. T = 0 K: E_F Deckel, E_C Boden des Potentialtopfs (potenzielle Energie)
- Schwacher Einsatz der spektralen Empfindlichkeit bereits bei λ > hc / Φ Rot-Ausläufer; Verlauf nahe der Schwelle nach Fowler:

$$I_{ph} \propto A(\nu)(h\nu - \Phi)^2$$

- Austrittsarbeit Φ für Metalle zwischen
 2 eV und 5 eV, am kleinsten für
 Alkalimetalle empfindlich für VIS
- Metalle besitzen kleine Quantenausbeuten von nur einigen Promille, u.a. wegen Reflexions- und Stoßverlusten

Halbleiter | Photokathoden

- Bändermodell eines p-Halbleiter-Vakuumübergangs mit effektiver positiver bzw. negativer Elektronenaffinität χ_{eff} des Halbleiters; χ_{eff} ist die wirksame Barriere
- Halbleiterphotokathoden besitzen meist längere Grenzwellenlängen als Metallphotokathoden, z.T. im VIS, weil für viele Halbleiter EG + χ < ΦM ist.

- Halbleiterphotokathoden haben gegenüber Metallen wesentlich höhere Empfindlichkeiten, da
 - sie weniger Strahlung reflektieren d.h. mehr Strahlung absorbieren
 - die Energieverluste durch Elektron-Elektronstreuung wegen der geringeren Elektronendichte im Halbleiter erheblich geringer sind
 - die Fluchtweglänge der Elektronen (max. Laufstrecke, um noch die Oberfläche zu erreichen) einige zehn Nanometer und nicht wie bei Metallen nur einige Nanometer beträgt.

optoelektronische Empfänger

Quanten

Thermisch

erer Dann die Praxis!

konstant

moduliert

PMT

MCP

Dioden

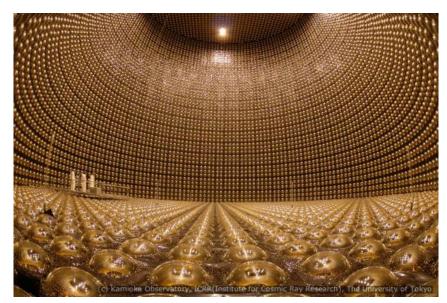
Photoleiter

Thermoelektrischer Effekt

Bolometer **Effekt**

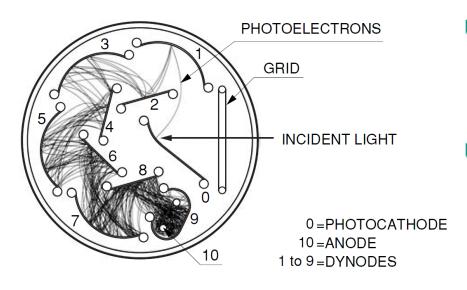
Pyroelektrischer Effekt

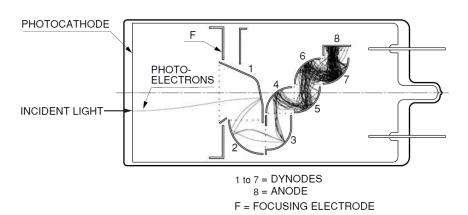
Thermopneumatischer **Effekt**


13

Photomultiplier Tubes (PMT)

www.hamamatsu.com




http://sales.hamamatsu.com/

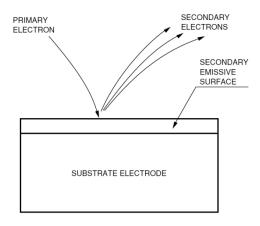
- Photomultiplier Tube
- Sehr sensitive Empfänger zum Nachweis einzelner Photonen
- 11.200 20-inch PMTs in Super-Kamiokande. Forschungseinrichtung in Japan für den Nachweis des Neutrinozerfalls. 1km tief im Berg eingebaut.

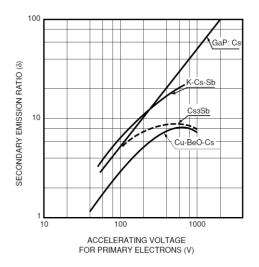
PMT Design

http://sales.hamamatsu.com/assets/pdf/catsandguides/PMT_handbook_v3aE.pdf

Aufbau

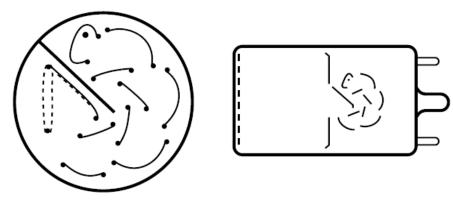
- Photokathode
- Dynoden (min 2, typ. 10, max 19)
- Anoden

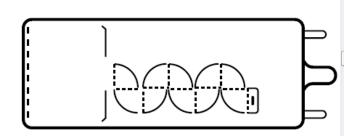

Funktionsprinzip


- Photonen schlagen auf Photokathode und lösen Elektronen (äußerer Photoeffekt)
- Elektrisches Feld zwischen PK und Dynode beschleunigen **Flektron**
- Schnelles Elektron schlägt mehre Elektronen aus Dynode
- Stufenprozess bis zur letzten Dynode - Lawinenartig Vervielfachung.
- Flektronen werden auf der Anode gesammelt = Strom

15

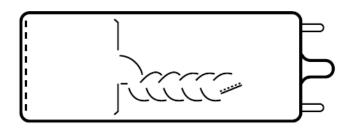
Dynoden

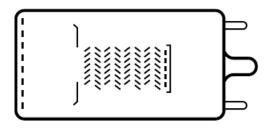



- Belche zur Elektronenvervielfachung und Lenkung
- Typ. Materialien:
 - Edelstahl | Nickel
- Dynoden vervielfachen die Elektronen
 - Bis zu 19 Stufen
 - Vervielfachung von 10¹ bis 10⁸
- Sekundärelektronenemission abhängig von
 - Beschichtung
 - Elektronengeschwindigkeit (Energie)
- Typ. Beschichtungsmaterialien
 - Beryllium Oxyd | BeO
 - Magnesium Oxyd | MgO
 - Gallium Phosphid | GaP
 - Galliumarsenid Phosphid | GaAsP

http://sales.hamamatsu.com/assets/pdf/catsandguides/PMT_handbook_v3aE.pdf

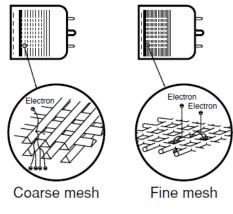
Bauarten von PMT-1





(1) Circular-cage Type

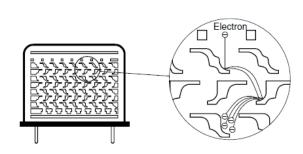
(2) Box-and-grid Type

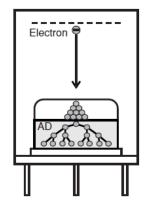


(3) Linear-focused Type

(4) Venetian Blind Type

Bauarten von PMT - 2





(5) Mesh Type

(6) Microchannel Plate Type

(7) Metal Channel Dynode Type

(8) Eelectron Bombadment Type

http://sales.hamamatsu.com/assets/pdf/catsandguides/PMT_handbook_v3aE.pdf

18

Eigenschaften von PMT

Dynode Type	Rise Time (ns)	Pulse Linearity at 2% (mA)	Magnetic Immunity (mT)	Uniform- ity	Collection Efficiency	Features	
Circular-cage	0.9 to 3.0	4 +	0.1	Poor	Good	Compact, high speed	
Box-and-grid	6 to 20	1 to 10		Good	Very good	High collection efficiency	
Linear-focused	0.7 to 3	10 to 250	0.1	Poor	Good	High speed, high linearity	
Venetian blind	6 to 18	10 to 40		Good	Poor	Suited for large diameter	
Fine mesh	1.5 to 5.5	300 to 1000	500 to 1500*	Good	Poor	High magnetic immunity, high linearity	
MCP	0.1 to 0.3	700	1500*	Good	Poor	high speed	
Metal channel	0.65 to 1.5	30	5**	Good	Good	Compact, high speed	
Electron bombardment type		on internal uctor	_	Very good	Very good	High electron resolution	

^{*} In magnetic field parallel to tube axis

- Die Bauart beeinflusst die Eigenschaften sehr stark
- Ideale Bauart abhängig von der Applikation
- Den perfekten PMT gibt es nicht.

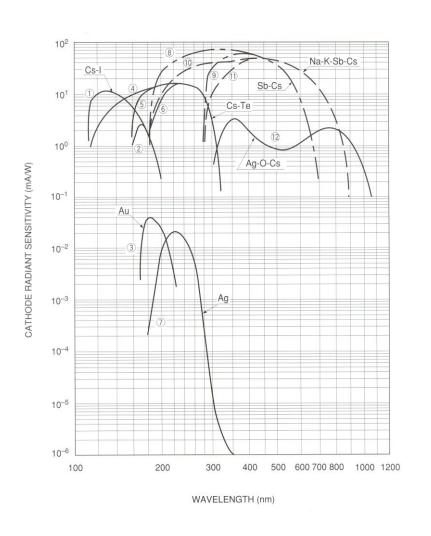
^{**} Metal package PMT

Spektrale Charakteristik

Reflection mode photocathodes

nenection mode photocathodes													
	Photocathode Material	Window Material	Luminous Sensitivity (Typ.) (μΑ/lm)	Spectral Response									
Curve Code (S number)				Spectral Range (nm)	Peak Wavelength								
					Radiant Sensitivity		Quantum Efficiency						
					(mA/W)	(nm)	(%)	(nm)					
100M	Cs-I	MgF2	_	115 to 200	14	140	13	130					
200S	Cs-Te	Quartz	_	160 to 320	29	240	14	210					
200M	Cs-Te	MgF2	_	115 to 320	29	240	14	200					
400K	Bialkali	Borosilicate	95	300 to 650	88	420	27	390					
400U	Bialkali	UV	95	185 to 650	88	420	27	390					
400S	Bialkali	Quartz	95	160 to 650	88	420	27	390					
401K	High temp. bialkali	Borosilicate	40	300 to 650	51	375	17	375					
500K (S-20)	Multialkali	Borosilicate	150	300 to 850	64	420	20	375					
500U	Multialkali	UV	150	185 to 850	64	420	25	280					
500S	Multialkali	Quartz	150	160 to 850	64	420	25	280					
501K (S-25)	Multialkali	Borosilicate	200	300 to 900	40	600	8	580					
502K	Multialkali	Borosilicate (prism)	230	300 to 900	69	420	20	390					
700K (S-1)	Ag-O-Cs	Borosilicate	20	400 to 1200	2.2	800	0.36	740					
_	GaAsP(Cs)	_	_	300 to 720	180	580	40	540					
_	GaAs(Cs)	_	_	380 to 890	85	800	14	760					
_	InP/InGaAsP(Cs)	_	_	950 to 1400	21	1300	2.0	1000 to 1300					
_	InP/InGaAs(Cs)	_	_	950 to 1700	24	1500	2.0	1000 to 1550					

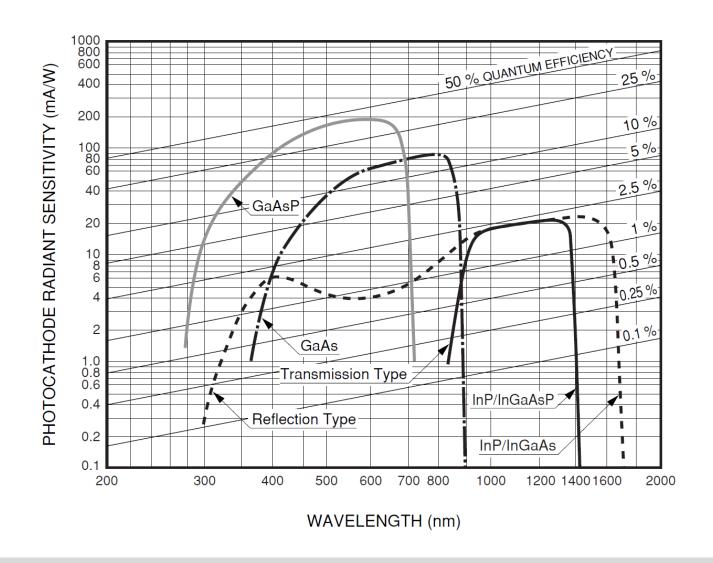
Spektrale Charakteristik abhängig von


- Photokathodenmaterial
- Eingangsfenster

Charakteristik ist

- stark wellenlängenabhängig
- geringe QE
- eingeschränkt (kleiner Bereich)

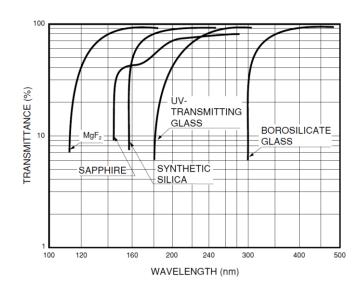
spektrale Eigenschaft | metallische Kathoden

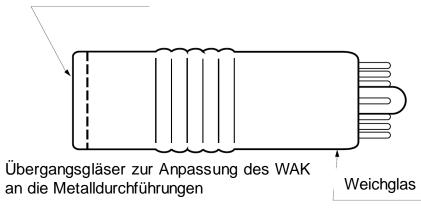


- Einige Nanometer dicke Metällschichten aufgedampft auf Träger aus Ag, Fe, Mo
- Cs-I und Cs-Te ergeben sonnenblinde Photokathoden, die bei hohen UV-Bestrahlungen relativ stark altern.
- Au-Photokathoden sind relativ stabil.

21

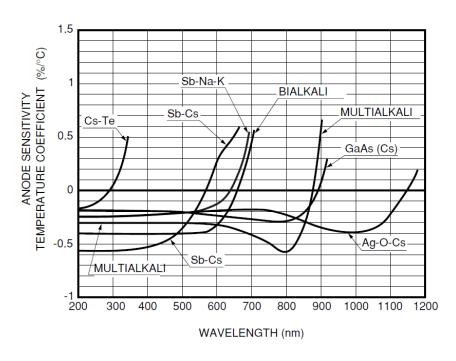
Spektrale Eigenschaften | HL Photokathode




22

Fenstermaterialien

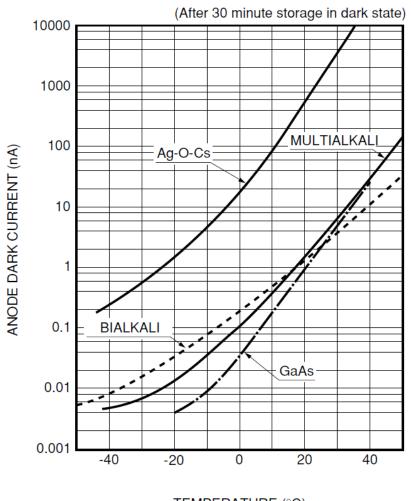
Eintrittsfenster (Quarz)


- Äußerer Photoeffekt
 - Nutzung freie Elektronen
 - Notwendigkeit von Vakuum
 - Vakuum im Hüllkolben
- Hüllkolben
 - Transparent für Nutzwellenlänge
 - Gläser = Langpassfilter im UV
 - Unter Einsatzwellenlänge abhängig vom Fenstermaterial
- Typ. Materialien
 - Borosilikatglas | 300 nm | UVA
 - UV Glas | 200nm | UVB UVC
 - Quarz | 160nm | UVC
 - MgF2 | 115nm | VUV

http://sales.hamamatsu.com/assets/pdf/catsandguides/PMT_handbook_v3aE.pdf

10.06.2016

PMT Temperaturabhängigkeit | Empfindlichkeit

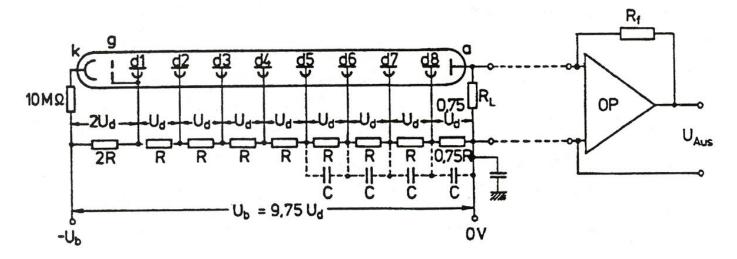


- Empfindlichkeit (T)
 - Bestimmt durch Photokathode
 - effektives Dynoden-Gain unempfindlich gegen T
- Temperaturkoeffizient Photokathode
 - Wellenlängenabhängig
 - Relativ groß > 0,5 % / °C
 - negativ bei kleinen Wellenlängen
 - positiv am langen Wellenlängenende

PMT Dunkelstrom

Photokathode

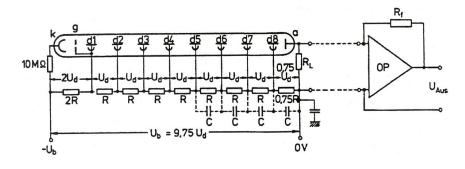
- Halbleiter mit geringer Austrittsarbeit
- großer Einfluss von Tauf Austrittsarbeit
- großer Einfluss von Tauf Dunkelstrom

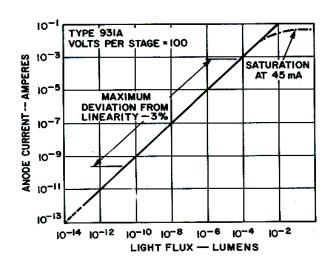

Maßnahmen

- Kühlung des PMT bei Anwendungen mit wenig Licht.
 - Achtung auf Kondenswasser
 - Nutzung von Vakuum Fenster
- Temperatur stabilisieren bei radiometrischen Anwendungen
- Achtung bei Messungen absoluter Größen wie I, E

TEMPERATURE (°C)

PMT Beschaltung





- Anforderung
 - Stufenpotential von Dynode zur Dynode
 - konstante und gleiche Spannung
 - Erzeugung der Stufenspannungen über ohmsche Widerstandskette
- Signal
 - Anodenstrom = verstärkter Kathodenstrom über Messwiderstand R_L

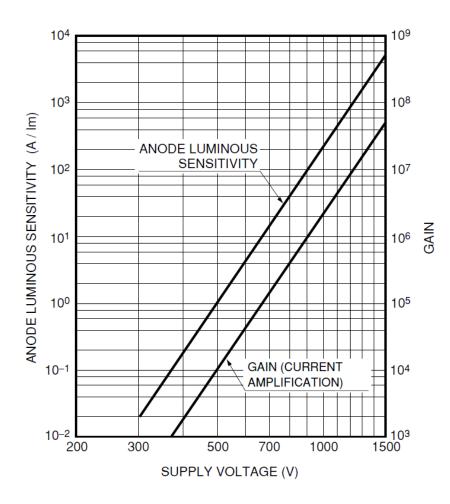
PMT Beschaltung

- Zur Erzeugung der Stufenspannungen ohmsche Widerstandskette, über der die Hochspannung geteilt wird.
- Anodenstrom = verstärkter Kathodenstrom fließt über Messwiderstand RL ab.
- Photomultiplier nur linear, wenn Kettenstrom sehr groß (Faktor ≥ 100) gegen Anodenstrom ist
- Bei stark pulsierender Bestrahlung werden die letzten Kettenwiderstände kapazitiv abgestützt

PMT Ersatzschaltbild

$$\delta = p \cdot (U_d)^q$$

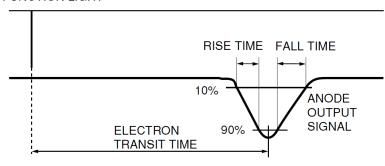
$$G = \frac{I_A}{I_K} = f(g \cdot \delta)^n \propto (U_H)^{q \cdot n}$$

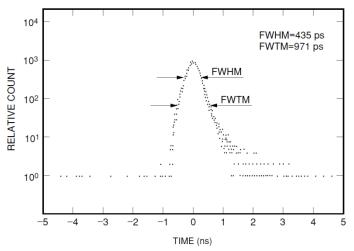

$$\frac{\Delta G}{G} = q \cdot n \frac{\Delta U_{H}}{U_{H}}$$

Im Ersatzschaltbild stellt sich der Photomultiplier als eine sehr gute Stromquelle mit einem Innenwiderstand > 10¹² Ω und Kapazität < 10 pF dar.</p>

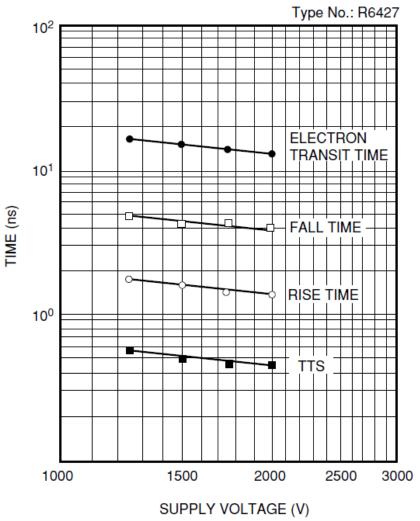
- Sekundärelektronenausbeute pro Stufe, abhängig von der Interdynodenspannung Ud und q; q=0,7 – 0,8 abhängig von Material und Struktur
- Gesamte Stromverstärkung G variiert mit einer Potenz q·n=6 – 10 der Hochspannung U_H.
 - f Grad der Fokussierung auf die erste Dynode
 - g Anteil der Elektronen von einer Stufe zur nächsten
- Um Verstärkung konstant auf 1% konstant zu halten, ist die Hochspannung auf etwa 1 ⁰/₀₀ zu stabilisieren!

Verstärkerspannung


Verstärkung


- abhängig von Beschleunigungsspannung
- Um Verstärkung auf 1% konstant zu halten, ist die Hochspannung auf etwa 1% zu stabilisieren!
- Sehr stabile Spannungsquellen benötigt.
 - Extrem konstant (kein Rippel)
 - Hohe Spannung > 1kV
 - kleine Ströme

Definition der Zeiten eines PMT



- Transit Time
 - Totzeit zwischen Einfall Photon und Anodenstrom
 - Bauart abhängig
 - Bereich 10 20 ns
- Rise- und Fall-Time
 - Flanken des Antwortpulses
 - abhängig von Beschaltung
 - abhängig von Eingangskapazität des PMT
 - Bereich ps bis ns
 - Rise Time > Fall Time
- TTS (Transit Time Spread)
 - Variation der Transitzeit
 - vor allem bei geringer Ausleuchtung

http://sales.hamamatsu.com/assets/pdf/catsandguides/PMT_handbook_v3aE.pdf

Zeitverhalten

- Zeitverhalten wird beeinflusst von
 - Verstärkerspannung
 - Aufbauprinzip
- Transit Time
 - Bauart abhängig
 - Bereich 10 20 ns
- Rise- und Fall-Time
 - abhängig von Beschaltung
 - abhängig von Eingangskapazität des PMT
 - Bereich ps bis ns
 - Rise Time > Fall Time
- TTS (transit time spread)
 - abhängig vom Ausleuchtungsniveau
 - Bauart abhängig

optoelektronische Empfänger

Quanten

Thermisch

äußerer Nächstes Thema!

konstant

moduliert

PMT

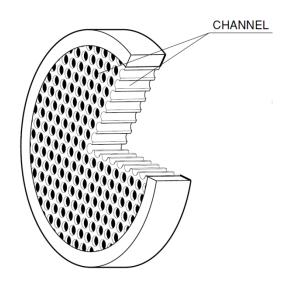
MCP

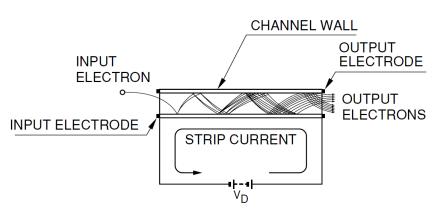
Dioden

Photoleiter

Thermoelektrischer Effekt

Bolometer **Effekt**

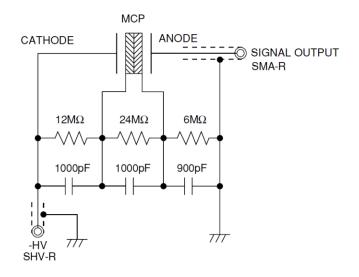

Pyroelektrischer Effekt

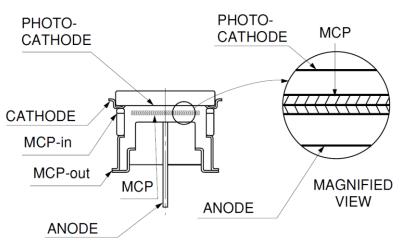

Thermopneumatisher **Effekt**

32

Multi-Channel-Plate (MCP)

Mikrokanalplatte

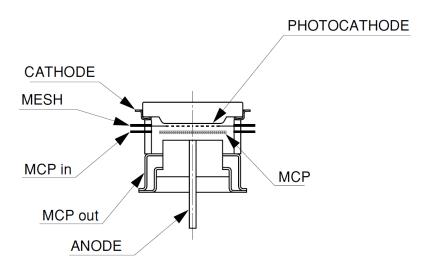

- Feine Glasröhren = PMT
- Durchmesser 6 20 μm
- Beschichtung der Innenwand
- Metallische Beschichtung auf den Stirnflächen

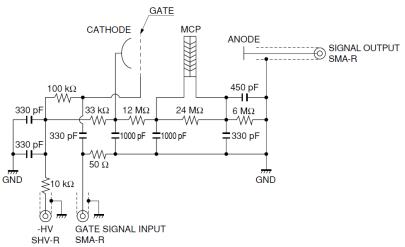

Eigenschaften

- Hohe Verstärkung in kleiner Bauform
- sehr schnelle Reaktionszeit
- 2D Bilderhaltend
- unempfindlich gegen B-Felder
- empfindlich für Elektronen, UV-, X-Ray, Gamma-, Neutronenstrahlung

Beschaltung MCP

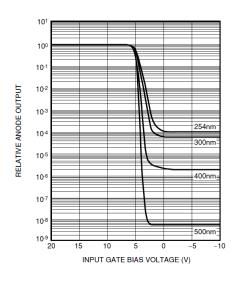
Prinzip

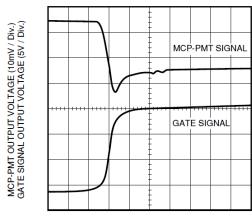

- Photokathode erzeugt Elektronen
- Elektronen werden auf MCP beschleunigt
- Sekundärelektronenvervielfachung im Kanal
- Anode empfängt Elektronenstrom


Aufbau

- Wand ist Dynode
- Winkel zwischen Wand und optischer Achse
- Hochspannung an Stirnflächen

MCP als optischer Schalter





- MCP als sehr schneller optischer Schalter
- Verstärkungspannung ~8kV an MCP dauerhaft an.
- Rise / Fall-Time 150ps bis 700ps
- Transsitzeit des MCP ~ 400ps
- Schaltzustände
 - AUS: Photokathode positiv (~10V) gegenüber Gateelektrode (Bremsung)
 - EIN: Photokathode negativ
 (~10V) gegenüber
 Gateelektrode (Beschleunigung)

MCP als optischer Schalter

Gate-Elektrode kann nur Elektronen beeinflussen.

- Photonen hoher Energie können direkt MCP anregen.
- Hoher Dunkelstrom bei kurzen Wellenlängen
- Blockrate wellenlängenabhängig.
- MCP kann mit kleinen Spannungshüben schnell geschaltet werden.
- Schaltzeiten abhängig von Spannungsquelle und Aufbau im ns bis Sub-ns Bereich.

http://sales.hamamatsu.com/assets/pdf/catsandguides/PMT_handbook_v3aE.pdf

TIME (2ns / Div.)